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1.0 Introduction 
The 0.4 to 2.5 µm spectral range provides abundant information about many important Earth-surface minerals (Clark 
et al., 1990).  In particular, the 2.0 to 2.5 µm spectral range covers spectral features of hydroxyl-bearing minerals, 
sulfates, and carbonates common to many geologic units and hydrothermal alteration assemblages.  Imaging 
Spectrometers, or “Hyperspectral” sensors provide the unique combination of both spatially contiguous spectra and 
spectrally contiguous images of the Earth’s surface that allows spatial mapping of these minerals (Goetz et al., 
1985).  Airborne hyperspectral data have been available to researchers since the early 1980s and their use for 
mineral mapping is well established (Goetz et al., 1985; Kruse and Lefkoff, 1993; Boardman and Kruse, 1994; 
Boardman et al., 1995; Kruse, et al., 1999).  Current airborne sensors provide high-spatial resolution (2–20 m), high-
spectral resolution (10–20 nm), and high SNR (>500:1) data for a variety of scientific disciplines (Green et al., 2001; 
Kruse et al., 2000).   
 
NASA’s EO-1 Hyperion sensor, launched in November 2000, is a test bed instrument designed to demonstrate 
hyperspectral imaging from space (Pearlman et al., 1999).  Science validation efforts are in progress and selected 
AIG/CSIRO Hyperion results demonstrating mineral mapping have previously been presented and published (Kruse 
et al., 2001, 2002).  New details and accuracy assessment compared to AVIRIS data are presented here. 
 
2.0 Comparison of AVIRIS And Hyperion Specifications 
The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) represents the current state of the art airborne 
hyperspectral system  (Porter and Enmark, 1987; Green et al., 2001).  AVIRIS, flown by NASA/Jet Propulsion 
Laboratory (JPL) is a 224-channel imaging spectrometer with approximately 10-nm spectral resolution covering the 
0.4–2.5-µm spectral range.  The sensor is a whiskbroom system utilizing scanning foreoptics to acquire cross-track 
data.  The IFOV is 1 milliradian.  Four off-axis double-pass Schmidt spectrometers receive incoming illumination 
from the foreoptics using optical fibers.  Four linear arrays, one for each spectrometer, provide high sensitivity in the 
0.4 to 0.7 µm, 0.7 to 1.2 µm, 1.2 to 1.8 µm, and 1.8 to 2.5 µm regions respectively.  AVIRIS is flown as a research 
instrument on the NASA ER-2 aircraft at an altitude of approximately 20 km, resulting in approximately 20-m 
pixels and a 10.5-km swath width.  Since 1998, it has also been flown on a Twin Otter aircraft at low altitude, 
yielding 2–4 m spatial resolution. 
 
The launch of NASA’s EO-1 Hyperion sensor in November 2000 marked the establishment of spaceborne 
hyperspectral mineral mapping capabilities.  Hyperion is a satellite hyperspectral sensor covering the 0.4 to 2.5 µm 
spectral range with 242 spectral bands at approximately 10 nm spectral resolution and 30 m spatial resolution from a 
705-km orbit (Pearlman et al., 1999).  Hyperion is a pushbroom instrument, capturing 256 spectra over a 7.5-km-
wide swath perpendicular to the satellite motion.  The system has two grating spectrometers; one visible/near 
infrared (VNIR) spectrometer (approximately 0.4–1.0 µm) and one short-wave infrared (SWIR) spectrometer 
(approximately 0.9–2.5 µm).  Data are calibrated to radiance using both pre-mission and on-orbit measurements.  
Table 1 shows a comparison of key AVIRIS and Hyperion characteristics. 
 

Table 1:  AVIRIS/Hyperion Sensor Characteristics Comparison 
 

HSI 
Sensor 

Spectral 
Resolution 

Spatial 
Resolution 

Swath 
Width 

SWIR 
SNR 

AVIRIS-High Altitude 10 nm 20 m 12 km ~500:1 
Hyperion 10 nm 30 m 7.5 km ~50:1 

 

                                                           
1 Analytical Imaging and Geophysics LLC, Boulder, Colorado, USA, E-mail: kruse@aigllc.com 



3.0 Basic Hyperspectral Mineral mapping – Cuprite, Nevada 
 
3.1 Site Description 
Cuprite, Nevada, located approximately 200 km northwest of Las Vegas (Figure 1) 
is a relatively undisturbed acid-sulfate hydrothermal system exhibiting well 
exposed alteration mineralogy consisting principally of kaolinite, alunite, and 
hydrothermal silica.  The geology and alteration were previously mapped in detail 
(Abrams et al., 1977; Ashley and Abrams, 1980).  Swayze (1997) includes a good 
geologic summary, a generalized geologic map, and detailed mineral maps derived 
from 1990 and 1994 AVIRIS data.  Cuprite, has been used as a geologic remote 
sensing test site since the early 1980s and many studies have been published (Goetz 
et al., 1985; Ashley and Abrams, 1980; Goetz and Strivastava, 1985; Swayze, 1997; 
Shipman and Adams, 1987; Kruse et al., 1990; Hook, 1990; Swayze et al., 1992; 
Goetz and Kindel, 1996; Kruse et al., 2002) 
 
This study compares mineral mapping results from AVIRIS data acquired 19 June 
1997 to Hyperion data collected 1 March 2001.  Figure 2 shows reference images 
for the AVIRIS and Hyperion data. 
 

                      
 

Figure 2: Reference images showing the AVIRIS (left) and Hyperion (right) coverage of the Cuprite, Nevada, site.  
The site is typically described as consisting of two hydrothermal centers (Swayze, 1997).  These can be 
seen in the images as bright areas to the right and left of the road running from NW to SE across the 
scenes. 

 

 
Figure 1:  Cuprite, Nevada, 

Location map. 



3.2 Methods 
AIG has developed standardized methods for analysis of hyperspectral data (Figure 3) (Kruse et al., 1996; Kruse and 
Boardman, 2000).  Both the AVIRIS and Hyperion data were processed to geologic products using these AIG-
developed approaches for extraction of mineralogic and geologic information.  This hyperspectral analysis 
methodology includes 1) data pre-processing (as required), 2) correction of data to apparent reflectance using the 
ACORN atmospheric correction software, 3) linear transformation of the reflectance data to minimize noise and 
determine data dimensionality, 4) location of the most spectrally pure pixels, 5) extraction and automated 
identification of endmember spectra, and 6) spatial mapping and abundance estimates for specific image 
endmembers.  A key point of this methodology is the reduction of data in both 
the spectral and spatial dimensions to locate, characterize, and identify a few 
key endmember spectra that can be used to explain the rest of the 
hyperspectral dataset.  Once these endmembers are selected, then their 
location and abundances can be mapped from the original data.  These 
methods derive the maximum information from the hyperspectral data 
themselves, minimizing the reliance on a priori or outside information. 
 
3.2.1 Destriping for Hyperion area array data 
If required, preprocessing/data clean-up may be applied to the data prior to 
atmospheric correction.  In the case of Hyperion data, though radiometric 
corrections were applied prior to data delivery to AIG, there was still a 
pronounced vertical striping pattern in the data (visible in individual bands, 
but more pronounced when using the linearly transformed data).  Such 
striping is apparently caused by dark current imbalances (DC Bias) of the 
detectors across the pixel direction of the detector (Dykstra and Segal, 1985).  
This is often seen in data acquired using push-broom (area array) technology 
(e.g., AIS, Hyperion).  Destriping was accomplished using custom software 
(following the model of software written for the original pushbroom imaging spectrometer AIS) (Dykstra and Segal, 
1985; Kruse, 1988).  This approach adjusts each image column brightness (in all bands) based on a calculated offset 
relative to the scene average detector response.  Assumptions made were that individual detectors were reasonably 
well behaved (stable) and that over the course of a data collect (“flightline”), that each of the cross-track detectors 
has covered, on the average, very similar surface materials.  Implementation consisted of calculation of an average 
spectrum for each of the 256 Hyperion detectors followed by determination of a global scene average spectrum.  
Each column spectrum was then subtracted from the global spectrum to determine offsets to be added to each pixel 
in the corresponding column.  Each pixel in each column of the radiance data was then adjusted accordingly using 
the calculated offset.  Destriping is only required for correcting the pushbroom Hyperion data and thus no destriping 
was applied to the AVIRIS data. 
 
3.2.2 Atmospheric Correction 
The AIG analysis methods are generally applicable to both airborne and satellite data.  The methodology requires 
processing radiance-calibrated data to apparent reflectance.  ACORN, currently used by AIG for correction of both 
airborne and satellite hyperspectral data (AIG, 2001), is a commercially-available, enhanced atmospheric model-
based software that uses licensed MODTRAN4 technology to produce high quality surface reflectance without 
ground measurements.  The Cuprite AVIRIS and Hyperion data were both converted to apparent reflectance using 
ACORN.  Appropriate model parameters for each instrument and collection date were used, otherwise, all other 
parameters were identical for both datasets. 
 
3.2.3 Standardized AIG Hyperspectral Analysis 
Standardized AIG hyperspectral analysis methods used for both the airborne sensors and Hyperion data 
(implemented in the ENVI image analysis software) include spectral polishing using “EFFORT” (Boardman, 
1998a), spectral data reduction using the Minimum Noise Fraction (MNF) transformation (Green et al., 1988; 
Boardman, 1993), spatial data reduction using the Pixel Purity Index (PPI) (Boardman, 1993), an n-Dimensional 
Visualizer to determine image endmembers (Boardman, 1993), identification of endmembers using their 
reflectance spectra (Kruse et al., 1993a) in the Spectral Analyst, and mineral mapping using both the Spectral 
Angle Mapper (SAM) (Kruse et al., 1993b) and Mixture-Tuned-Matched Filtering (MTMF) (Boardman, 1998b).  
This approach is shown in Figure 1 below and also outlined in Kruse et al. (1996) and Kruse and Boardman (2000). 
 

Figure 3: AIG Standardized Proc-
essing methods for hyperspectral 
data analysis. 



3.2.4 Geometric Corrections 
The final step in the analysis is usually to present the results 
on a map base.  In this case, to facilitate comparison of the 
Hyperion data to AVIRIS mineral mapping results and 
minimize resampling artifacts, the AVIRIS data were used as 
the base rather than a map.  The Hyperion data were 
geometrically corrected to match the AVIRIS data by picking 
ground control points (GCP) and using a 1st degree 
polynomial warp with nearest neighbor resampling.  
Approximately 20 GCPs were used and the residual errors 
were on the order of 2 pixels.  Hyperion image-maps (not the 
full data cube!) were geocorrected to match the AVIRIS data. 
 
3.3 Results 
Operationally, spectral bands covering the short wave 
infrared (SWIR) spectral range (2.0 – 2.5 µm for AVIRIS 
and 2.0 – 2.4 µm for Hyperion) were selected and these 
bands were linearly transformed using the MNF transformation.  Figure 4 shows a plot of the MNF eigenvalues for 
both datasets.  Higher eigenvalues generally indicate higher information content.  The MNF results indicate that the 
AVIRIS data contain significantly more information than the Hyperion data covering approximately the same spatial 
area and spectral range.  The actual data dimensionality is usually determined by comparing both the eigenvalue 
plots and the MNF images for each dataset (Figures 4, 5, and 6).  In the case of AVIRIS, the MNF analysis indicates 
a dimensionality of approximately 20.  The Hyperion data exhibits dimensionality of approximately 6. 
 

 

Figure 5.  MNF images for the AVIRIS SWIR data.  Images from left to right, MNF band 1, MNF band 5, MNF 
band 10, MNF band 20. 

 

 

Figure 6.  MNF images for the Hyperion SWIR data.  Images from left to right, MNF band 1, MNF band 2, MNF 
band 5, MNF band 10. 

Figure 4:  MNF eigenvalue plots for the Cuprite, 
Nevada, AVIRIS and Hyperion data 



The top MNF bands for each data set (20 for AVIRIS, 6 
for Hyperion), which contain most of the spectral 
information (Green et al., 1988), were used to determine 
the most likely endmembers using the PPI procedure.  
These potential endmember spectra were loaded into an n-
dimensional scatterplot and rotated in real time on the 
computer screen until “points” or extremities on the 
scatterplot were exposed (Boardman, 1993).  These 
projections were “painted” using region-of-interest (ROI) 
definition procedures and then rotated again in 3 or more 
dimensions (3 or more MNF bands) to determine if their 
signatures were unique in the MNF data.  Once a set of 
unique pixels were defined, then each separate projection 
on the scatterplot (corresponding to a pure endmember) 
was exported to a ROI in the image.  Mean spectra were 
then extracted for each ROI from the apparent reflectance 
data to act as endmembers for spectral mapping 
(Figure 7).  These endmembers or a subset of these 
endmembers (in the case of AVIRIS) were used for 
subsequent classification and other processing.  Mixture-
Tuned-Matched Filtering (MTMF), a spectral matching 
method  (Boardman, 1998b), was used to produce image-
maps showing the distribution and abundance of selected 
minerals.  (Note: MNF endmember spectra, not 
reflectance spectra are used in the MTMF).  The results 
are generally presented as gray-scale images (not shown) 
with values from 0 to 1.0, which provide a means of 
estimating mineral abundance.  Brighter pixels in the 
images represent higher mineral abundances.  Results 
images for both AVIRIS and Hyperion were produced by 
correcting the Hyperion data to match the AVIRIS spatial 
scale and orientation as described above.  Selected results 
were combined as color-coded images to show the 
distribution of the principal (spectrally predominant) 
minerals (Figure 8). 
 
Visual comparison of the two classified datasets shows 
that Hyperion identifies similar minerals and produces 
similar mineral mapping results to AVIRIS.  In this case, 
the difference in pixel size is generally inconsequential 
(causing only slight loss of spatial detail in Hyperion results).  It seems likely that the lower SNR of the Hyperion 
data (specified at approximately 50:1 vs >500:1 for AVIRIS) does affect the ability to extract characteristic spectra 
and identify individual minerals.  (See the Hyperion buddingtonite spectrum in Figure 7 above, which does not 
clearly show the characteristic buddingtonite spectral feature shape near 2.11 µm, which is well resolved in AVIRIS 
[Figure 7] and other hyperspectral aircraft data) (Kruse et al., 1990, 2000; Swayze, 1997; Green et al., 2001).  This 
spectrum could also, however, be an effect of the pixel size causing greater mixing in the Hyperion data for 
relatively small buddingtonite occurrences.  Additionally, bear in mind that Figure 8 shows a basic AVIRIS mineral 
map.  It is possible to extract more detailed mineralogic information from the AVIRIS data (Swayze, 1997; Green et 
al., 2001; Kruse et al., 2001, 2002;) as well as abundance information (Boardman and Kruse, 1994; Boardman et al., 
1995, Kruse et al, 1999).  Determination of abundances for minerals identified by Hyperion is possible, but not 
illustrated here.  Our analysis also indicates that the Cuprite Hyperion data do not allow extraction of the same level 
of detailed mineralogic information as AVIRIS (eg: within-species separation of micas and temperature mapping of 
Alunites) (Swayze, 1997; Swayze et al., 1992).  Actually though, Hyperion performs surprisingly well considering 
the overall SWIR SNR. 
 
 

Figure 7:  Comparison of selected AVIRIS endmember 
spectra (left) and Hyperion endmember spectra 
(right).  Note that AVIRIS detected several 
varieties of alunite plus an additional kaolinite-
group mineral (dickite) that were not detectable 
using the Hyperion data.  Other AVIRIS minerals 
and vegetation not shown. 



       
Figure 8:  MTMF mineral maps for AVIRIS (left) and Hyperion (right) produced using the endmember spectra in Figure 7. 

 
3.4  Accuracy Assessment and Error Analysis 
Visual comparison of the Hyperion and AVIRIS MTMF image maps in Figure 8 using the AVIRIS data as the 
“Ground Truth” indicates that in general, using these mapping methods, the two datasets produce similar mapping 
results.  Figure 9 shows a comparison of MTMF results for the minerals kaolinite and alunite, presented as binary 
images covering the data’s overlapping area (white is a specific mineral, black is unclassified), and it can be seen 
that these have similar patterns of classified pixels for the selected minerals. 
 
Detailed direct comparison of the mapping results demonstrates, however, that the correspondence is not as great as 
may be thought from visual comparison.  Comparison of the MTMF spectral mapping results using a confusion 
matrix approach shows that many pixels classified using AVIRIS are unclassified on Hyperion (up to 60%, but 
variable by mineral).  These are errors of omission.  This is probably explained by the differences in SNR between 
the two datasets.  Some spectral features are simply below the level of detection on the Hyperion data (This issue is 
explored further in a later section).  The same analysis, but excluding the unclassified areas, yields approximately 
75% overall agreement of Hyperion to AVIRIS, with a Kappa Coefficient of 0.66 (Table 2) (Richards, 1994).  This 
highlights errors of commission (where pixels mapped as one mineral by AVIRIS are mapped as another mineral by 
Hyperion).  First, some pixels unclassified using AVIRIS are misclassified as a specific mineral on Hyperion 
(around 5% commission error).  Additionally, some pixels classified by AVIRIS as specific minerals are 
misclassified as different minerals on Hyperion (~25% commission error).  Specifically, there is minor classification 
error between:  Kaolinite mapped by Hyperion as Muscovite (7%), Kaolinite and Silica (4%), Muscovite and Calcite 
(2%), Silica and Alunite (6%), Silica and Muscovite (3%), Silica and Calcite (1%), Buddingtonite and Kaolinite 
(7%), Calcite and Muscovite (5%), and Calcite and Silica (4%).  Moderate errors occur between:, Kaolinite mapped 



by Hyperion as Alunite (15%), Alunite and Kaolinite (16%), and Silica and Kaolinite (13%).  The highest errors 
occur between: Buddingtonite mapped by Hyperion as Alunite (58%), and Muscovite mapped by Hyperion as 
Kaolinite (25%).  Table 2 summarizes the error relationships between minerals. 
 

    
 
Figure 9:  Comparison of MTMF mineral mapping results for kaolinite and alunite.  White pixels indicate successful 

classification. 
 
Table 2:  Confusion matrix comparing Hyperion MTMF mapping results to AVIRIS “Ground Truth” MTMF results. 

 
 

 
AVIRIS “Ground Truth” Class (Percent) 

Hyperion  Kaolinite % Muscovite % Silica % Buddingtonite % Alunite% Calcite % Total % 

Kaolinite  73.13  25.09  12.87   7.02  16.39   2.66  36.20 

Muscovite   7.14  72.58   2.52   0.00   0.88   4.56  20.63 

Silica   4.33   0.79  76.96   0.00   2.23   4.18   8.70 

Buddingtonite   0.02   0.00   0.00  35.09   0.49   0.00   0.61 

Alunite  14.83   0.00   6.39  57.89  79.68   0.00  31.38 

Calcite   0.55   1.54   1.26   0.00   0.33  88.59   2.48 

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

 
While this comparison serves to highlight the accuracy and overall performance of the Hyperion dataset compared 
to AVIRIS, several other issues may affect the accuracy assessment.  These include: 1) the data coverage (spatial 
extent) of the two datasets – they cover substantially the same ground, but not exactly (affects unclassified class), 2) 
the data pixel size (AVIRIS is 20m, Hyperion 30m), 3) Image acquisition differences (date/time, atmospheric 
conditions, SNR), 4) slightly different spectral characteristics (2.0 – 2.5 µm for AVIRIS vs 2.0 – 2.4 µm for 
Hyperion; varying band centers and spectral resolution), 5) different image-based endmembers spectra used for 
MTMF (endmember spectra not identical), 6) MTMF threshold consistency and class combining (AVIRIS), and 7) 
Hyperion to AVIRIS image registration accuracy. 
 
4.0 SNR COMPARISONS – EFFECT ON MINERAL MAPPING 
Previous Hyperion investigations show that there is a strong relationship between the acquisition time of year and 
the signal-to-noise ratio (SNR) of the Hyperion data (Kruse et al., 2001, 2002).  SNR for the same targets are higher 
in the summer and lowest in the winter.  This has a direct effect on spectral mineral mapping, with lower SNR 
resulting in extraction of less detail (also see AVIRIS vs Hyperion MNF comparison above).  Calculation of data 
SNR using a Mean/Standard Deviation method for a homogeneous target (Stonewall Playa) produces the results 
shown in Figure 10 for the Cuprite AVIRIS (June 1997) and Hyperion (March 2001).  While these SNR are 
representative of those that can be extracted directly from the data, slightly higher SNR could probably be obtained 
through analysis of the data dark current signal. Figure 10 also shows calculated SNR for Hyperion data collected 



during July 2001 (northern hemisphere summer) for a site in northern Death Valley, California.  All SNR are 
normalized to 50% reflectance.  Note that the SWIR SNR is significantly higher than the calculated Cuprite SWIR 
SNR for the March 2001 data (SWIR SNR ~50:1 vs 25:1).  The implications of the decreased Hyperion winter SNR 
are evident in endmember spectra extracted from both the Cuprite AVIRIS and Hyperion (Figure 7) and the northern 
Death Valley Hyperion data (Figure 11).   
 

  

 
While the Cuprite Hyperion data allow basic mineral identification, more detail (additional endmembers) are 
detected and mapped using the higher SNR AVIRIS and Hyperion data.  This is also important for geologic/mineral 
mapping, because higher SNR allows separation of similar endmembers such as calcite from dolomite (Figure 11) 
and within-species variability such as kaolinite vs dickite (Figure 7).  In the northern Death Valley case, the high 
SNR allows detection of 3 different mica endmembers with different aluminum substitution (Kruse et al., 1999).  
Previous investigations have indicated that SNR is critical for this determination (Kruse et al., 1999, 2001, 2002). 
 
5.0 Conclusions 
Analysis of Hyperion data for Cuprite, Nevada, which has established ground truth and years of airborne 
hyperspectral data, show that Hyperion is performing to specifications and data from the short wave infrared 
(SWIR) spectrometer can be used to produce useful geologic (mineralogic) information.  Airborne Visible/Infrared 
Imaging Spectrometer (AVIRIS) data collected during June 1997 served as the “ground truth” for this investigation.  
Comparison of Hyperion results to the known mineralogy derived from AVIRIS data generally validate on-orbit 
mineral mapping and Hyperion performance.  Minerals mapped at Cuprite using Hyperion include kaolinite, alunite, 
buddingtonite, calcite, muscovite, and hydrothermal silica. This case history demonstrates the analysis 
methodologies and level of information available from these Hyperion data.  It also demonstrates the importance of 
high signal-to-noise performance for hyperspectral sensors.  The Cuprite Hyperion data represent an “early” 
Hyperion acquisition for the northern hemisphere (a winter scene); thus the SWIR signal-to-noise ratio (SNR) 
(Mean/Standard Deviation method on Stonewall Playa) is approximately 25:1.  Other Hyperion scenes collected 
under optimum (summer) conditions exhibit SWIR SNR as high as approximately 50:1.  The level of mineralogic 
information available from the data is directly tied to the SNR. 
 
Standardized hyperspectral data processing methods applied to the Cuprite Hyperion data lead to definition of 
specific key minerals, however, it is more difficult (than for AVIRIS) to extract the information because of the 
Hyperion data’s lower SNR.  The effect of this reduced response compared to AVIRIS is lower data dimensionality, 

Figure 10: SNR Comparisons for June 1997 AVIRIS, July 2001 
Hyperion, and March 2001 Hyperion. 

Figure 11: Northern Death Valley 
Hyperion Spectral 
Endmembers 



thus fewer endmembers can be identified and mapped than with AVIRIS.  Accuracy assessment and error analysis 
indicates that with these Cuprite Hyperion data that, in many cases, mineral identification is not possible where 
specific minerals are known to exist. Detailed direct comparison of mixture-tuned-matched-filtering (MTMF) 
spectral mapping results using a confusion matrix approach shows that many pixels classified using AVIRIS are 
unclassified on Hyperion (up to 60%, but variable by mineral).  These are errors of omission.  This is probably 
explained by the differences in SNR between the two datasets.  Some spectral features are simply below the level of 
detection on the Hyperion data.  The same analysis, but excluding the unclassified areas, yields approximately 75% 
overall agreement of Hyperion to AVIRIS, with a Kappa Coefficient =0.66.  This highlights errors of commission 
(where pixels mapped as one mineral by AVIRIS are mapped as another mineral by Hyperion).  First, some pixels 
unclassified using AVIRIS are misclassified as a specific mineral on Hyperion (around 5% commission error).  
Additionally, some pixels classified by AVIRIS as specific minerals are misclassified as different minerals on 
Hyperion (~25% commission error).  The highest errors occur between: Buddingtonite mapped by Hyperion as 
Alunite (58%), and Muscovite mapped by Hyperion as Kaolinite (25%). 
 
As a technology demonstration, Hyperion performs surprisingly well for mineral identification and mapping.  We 
expect (and have demonstrated) improved mineral identification and mapping results from “summer” season 
Hyperion acquisitions with higher SNR than the Cuprite data.  These improvements principally take the form of 
mapping of subtle distinctions such as determining the difference between calcite and dolomite and mapping within-
species variability caused by molecular substitution (eg: aluminum substitution in micas).  Unfortunately, Hyperion 
data collected under less than optimum conditions (winter season, dark targets) have marginal SWIR SNR and allow 
mapping of only the most basic mineral occurrences and mineral differences (Kruse et al., 2001, 2002).  This results 
in a recommendation that future HSI satellite sensors have significantly higher SNR performance specifications than 
Hyperion for the SWIR (at least 100:1 based on dark current measurements). 
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